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Abstract

The inverse kinematics problem deals with the question of how the nervous system coordinates

movement to resolve redundancy, such as in the case of arm reaching movements where more

degrees of freedom are available at the joint versus hand level. In particular, this work focuses

on determining which coordinate frames can best represent human movements, allowing the

motor system to solve the inverse kinematics problem in the presence of kinematic redundan-

cies. In particular, in this work we used a multi-dimensional sparse source separation method

called FADA to derive sets of basis functions (here called sources) for both the task and joint

spaces, with joint space being represented in terms of either the absolute or anatomical joint

angles. We assessed the similarities between the joint and task sources in each of these joint

representations. We found that the time-dependent profiles of the absolute reference frame’s

sources show greater similarity to those of the corresponding sources in the task space. This

result was found to be statistically significant. Hence, our analysis suggests that the nervous sys-

tem represents multi-joint arm movements using a limited number of basis functions, to allow

for simple transformations between task and joint spaces. Importantly, joint space seems to

be represented in terms of an absolute reference frame to achieve successful performance and

simplify inverse kinematics transformations in the face of the existing kinematic redundancies.

Further studies will be needed to determine the generalizability of this finding and its implica-

tions for neural control of movement.

Introduction
Humanmotor behavior is extremely rich, exhibiting a large variety of possible movements. How-

ever, the question of how the nervous systemplansmovement remains one of themost debated

issues in the field of motor control. Human armmovements are of great interest given their par-

ticular versatility and adaptability, enabling the performance of numerous different motor tasks.

To a large extent this versatility is due to the inherent kinematic redundancy of the human arm.

Kinematically redundant limbs or manipulators are structures that have more degrees of free-

dom (DoFs) than those required for the performance of a specified task. Redundancy is highly

beneficial when the need arises to overcome obstacles, adapt to environmental changes, or over-

come fatigue. An excess number of DoFs can allow for motor tasks to be accomplished in many
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different ways.

While excess DoFs can prove useful, they raise the question of how the central nervous sys-

tem (CNS) overcomes the computational problems associated with the neural control of redun-

dant DoFs. Specifically, it is not fully understood how the CNS resolves kinematic redundancies

to produce appropriate motor commands that can activate different limb muscles and produce

forces and torques necessary to move the limb along a desired trajectory. This question was

introduced by Bernstein (1967) and was termed the "excess degrees of freedom problem".

Redundancy, though, is not limited to the workspace or task levels. In general, the motor

control hierarchy for planningmovement has four levels: end-point (or task) variables (e.g. hand

positions and velocities), joint angles and angular velocities, muscle activations, and neural activ-

ity patterns within cortical, sub-cortical, and spinal regions of the nervous system. It should be

noted that redundancy appears at all of these levels. Firstly, most motor tasks can be performed

using multiple possible end-effector postures and trajectories. Meanwhile, redundancy also ex-

ists at the level of joint rotations because the number of joint DoFs is larger than the number

of end-effector DoFs. Moreover joint postures and rotations are controlled by generating appro-

priate joint torques produced by many alternative patterns of muscle activations. Due to the

overlapping muscles’ actions and the ability to co-contract more muscles than are mechanically

needed, the same arm configurations can be achieved through the generation of many different

muscle activation patterns, which are determined at the neuronal level. Additionally, a rule of

thumb is that a higher level in the motor hierarchy controls a greater number of state variables

than the level below. Thus, at each level in the motor hierarchy (i.e. neural, muscular, joint, and

task levels) these commands or states uniquely prescribe states at the level below. For exam-

ple, joint positions prescribe the hand end-point position, and many different combinations of

muscle commands can prescribe a particular joint position and limb configuration.

The inverse-kinematics (IK) problem is concerned with investigating how the CNS resolves

this redundancy, for example by defining a unique arm configuration to achieve a desired hand

location (in spite of the existing kinematic redundancy). Many researchers have tackled this

problem and numerous approaches to finding the solution have been proposed. For example,

Soechting and Terzuolo (1986) addressed the inverse kinematics problem in the context of ellip-

tical hand drawingmovements. Particularly, they proposed a straightforward algorithm suggest-

ing that elliptical hand trajectories result from oscillatory patterns of joint rotations, whereby

the phase shifts between the different joint oscillations were assumed to be used to determine

the geometrical form and orientation of the drawing plane. Others tried to apply methods from

robotics involving the use of the generalized inverse of themanipulator or arm Jacobian (Whitney,

1969; Shamir, 1995;Walker et al., 2008; Siciliano, 1990).

Cyclic drawing movements, however, pose some difficulty to these traditional ap-

proaches. For drawing a cyclic shape in which the end-effector returns to the initial

point, these solutions produce non-repeatable trajectories in joint-space (Klein and Huang,

1983). Many additional studies have tried to solve this problem of joint repeatabil-

ity by suggesting a variety of inverse kinematics algorithms that overcome this problem

(Hollerbach and Suh, 1987; Baker and Wampler, 1987; Shamir and Yomdin, 1988; Klein and Kee,

1989; Mussa-Ivaldi and Hogan, 1991; Roberts and Maciejewski, 1992; Mukherjee, 1995). Mean-

while, others have focused on solving for the joint-space trajectories with optimization-based

methods aimed at minimizing some cost function (Biess et al., 2007; Nguyen et al., 2021;

Flash et al., 2019; Wolpert et al., 1995), or using dimensionality reduction methods enabling a

search for coupled or correlated DoFs (Gritsenko et al., 2016; Schröder et al., 2014).

There also has been research using optimization and computational methods as a means to

explain neural motion planning. For instance, the minimum-jerk model (Flash and Hogan, 1985)

was developed to account for the kinematic characteristics of observed human hand trajectories,

assuming that movement is coordinated to achieve optimal smoothness of the end-effector tra-

jectory. Other studies have developed differentmodels based on theminimization of alternative
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cost functions, such as theminimum torque-change (Uno et al., 1989) and theminimumvariance

(Harris and Wolpert, 1998) models.

More recently, other elaborate optimization models were developed aiming at integrating

multiple costs at different levels of the motor hierarchy in order to provide a complete solu-

tion. For example, many models (Denny Fu et al., 2013;Menner et al., 2021; Isableu et al., 2016;

Mombaur et al., 2010; Berret et al., 2011; Oguz et al., 2018; Sharif Razavian et al., 2015; Scott,

2004) have emphasized the significance of optimal feedback selection for successful genera-

tion of multi-joint movements, based on the optimal feedback control framework developed

by Todorov and Jordan (2002), and some others have exploited machine learning techniques

(Srisuk et al., 2017; Liu and Liu, 2020).

On the other hand, a different set of approaches to the inverse kinematics problem have

exploited dimensionality reduction techniques. The idea behind this class of approaches is that

appropriate motor commands might occupy only a subspace or manifolds of lower dimension-

ality within the high-dimensional space of possible solutions, involving different combinations

of motor variables and control inputs (Flash and Bizzi, 2016; d’Avella et al., 2015). In that case,

correlations between the DoFs can be identified, and these correlations quantitatively reflect

coordination patterns responsible for effectively lowering the dimensionality of the motor rep-

resentation.

The lawof intersegmental coordination is a good example of such an innate dimensionality re-

duction solution. Motor control scientists havedescribed abehavioral phenomenonwhereby the

absolute elevation angles of the leg during locomotion essentially covary on a plane, known as

the intersegmental plane of coordination, and can be represented by two degrees of freedom, in-

steadof the three existing joint angles (hip, thigh, and shank) (Bianchi et al., 1998;Borghese et al.,

1996). The absolute elevation angles describe the orientation of the leg segments with respect

to gravity as opposed to the anatomical angles that describe the orientation of one leg segment

with respect to an adjacent segment. The observed covariation plane can also provide context

that can be useful for understanding healthy and pathological gait patterns (Israeli-Korn et al.,

2019; Gueugnon et al., 2019; Martino et al., 2014). In particular, the observations described by

this law of intersegmental covariation are only obtained if the joint angles are represented in

terms of absolute coordinates in the sagittal plane, which is a finding that indicates the impor-

tance of identifying which reference frames subserve the representation of motor commands

during human gait.

In recent years, numerous dimensionality reduction methodologies have been applied to

kinematic and dynamics data obtained from studies of the motor system, resulting in differ-

ent definitions of motor variables as well as units of action and motor primitives. These are

usually selected based on geometrical considerations, statistical likelihoods, information the-

ory concepts, etc. Specifically, in this work we have reformulated dimensionality reduction by

using a blind source separation family of solutions. In particular, we applied a dimensional-

ity reduction method called FADA (Fourier-based Anechoic Demixing Algorithm) developed by

Omlor and Giese (2007); Chiovetto et al. (2016) based on anechoic demixing to derive the ba-

sis functions (also called sources) that underly movement patterns. Specifically, we consider

whether it may be possible to use the same single set of basis functions to represent both joint

and task position variables. This would then provide a hypothesis for how the nervous system

may solve the inverse kinematics problem. Details of this method are presented in the Back-

ground in the Dimensionality Reduction section.

Additionally, in the Background we include a description of the arm kinematic model pre-

sented by Soechting (1982), on which our study is based. Finally, in this work we focus on kine-

matic andmathematical analyses to determine which reference framesmight allow for a unique

set of basis functions to represent both joint and task spaces. Particularly, we examine the joint-

space in an anatomical reference frame versus an absolute reference frame. See the Background

for a longer discussion about the relevance and importance of different reference frames and
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representations.

Background
The goal of this work is to help solve the inverse kinematics problem for armmovements using di-

mensionality reduction to identify basis functions thatmay be used by the CNS formovement co-

ordination. An important element to consider in a given solution, is what coordinate system any

solution is represented in, since this can provide insight into how the nervous system resolves

redundancy. Additionally, it is important to carefully select the arm model used in obtaining re-

sults, as this may affect the solution and some armmodels may allow for more impactful results.

Finally, the specific method of dimensionality reduction used for identifying motor primitives

or basis functions is important as some methods may produce more meaningful, generalizable

results. These topics are discussed in this section.

Reference Frames & Representations

A multi-joint system can be described by its configuration at each instant in time; however, this

depends on the coordinate system used for its spatial representation. The various possible co-

ordinate systems are termed generalized coordinates, which are sets of variables that uniquely

and compactly define the configuration of the system (coordinates in the configuration space).

Figure 1 exemplifies two possible coordinate systems for a simple kinematic chain. Theoretically

one could define an infinite number of coordinate system representations, but it turns out that

these representations can be grouped into specific classes. Two representations in the same

class are equivalent if a rigid/linear transformation between them exists. Therefore, two ques-

tions should be asked for a given system: a) can the controlled representation be identified? b)

what are the reasons for choosing one representation over another?

Figure 1: Generalized Coordinates: Two different representations that describe that exact same configuration: a) Anatomical

or relative joint angles, b) Absolute or Elevation angles.

The question of representation is critical in motor control. Many studies have focused on

which variables (kinematic, dynamic, etc.) are represented and controlled by the CNS for move-

ment planning and execution. Over the years, this question has attracted considerable attention

and among other studies, Soechting and Flanders and colleagues have extensively studied this

issue. Specifically, in Soechting and Ross (1984) they conducted several psychophysical studies

aimed at examining alternative representations to determine which particular representation

subserves the control of human arm posture and movement. Their experiments consisted of a
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matching task in which one armwas set to a given joint angle by the experimenter and the subject

was asked to match this joint angle with their other arm. Movement in the matching arm was

constrained to the degree of freedom being investigated. Their working hypothesis was that the

"natural" coordinate representation of joint angles would have the lowest standard deviation in

the difference between the joint angles of the two limbs.

In Soechting (1982), the authors investigated three different coordinate systems for the shoul-

der orientation and two different systems for the elbow, and according to their psychophysical

results discovered that the sense of limb orientation appears to be expressed best by the coor-

dinate system illustrated in Figure 2b, picking (�, �, �, �) to represent the arm configuration. It

should be noted that rather than using relative orientation, such as defining the forearm joint

angle with respect to the upper arm (�), these angles describe the limb orientation relative to an

absolute frame of reference.

Figure 2: Armmodel. In a) the first representation (�, �, � , �) combining absolute and internal reference frames is shown and

in b) the second representation (�, �, �, �) with a completely external reference frame is shown. The plane of the upper arm

is shown in blue and the plane of the forearm is shown in pink.

Borghese et al. (1996) investigated coordination patterns of leg segments and joints during

locomotion. Importantly they examined leg joint coordination in two sets: anatomical (relative)

joint angles and elevation angles (absolute). In their paper they claim that these two representa-

tions form different classes and no simple transformation exists between them. The hip angle

can be used to illustrate this point. The thigh elevation angle is the angle between the thigh and

the vertical, and the hip angle is the angle between the thigh and the torso. Thus the hip angle

cannot be reconstructed unless the torso is assumed to be vertical. Therefore, the transforma-

tion between coordinate frames without torso orientation is not trivial.

Furthermore, it was shown in multiple studies (Borghese et al., 1996; Bianchi et al., 1998;

Barliya et al., 2009) that elevation angles are well behaved, have highly sinusoidal properties

and when plotted with respect to each other, they lie on a plane during the gait cycle. On the

other hand, the time course of the anatomical angles is much more variable, including inter-

cycle variability. Additionally, Soechting and Ross (1984) also found that subjects were best able

tomatch joint angles of their right and left armswhen they weremeasured relative to the vertical

axes and the sagittal plane.

In particular, these experiments identified yaw and elevation angles as the selected spatial

coordinate system for the perception of arm orientation. Studies have shown that target loca-

tion is initially defined in a reference frame centered at the eyes and the origin of this reference

frame is shifted toward the shoulder during the neural processing for targeted armmovements

(Soechting et al., 1990b). Then, in this shoulder-centered frame of reference, target location is

defined by three parameters: distance, elevation and azimuth (Soechting and Flanders, 1989).

Moreover it was suggested by Flanders and Soechting (1990) that there exists a linear transfor-

mation involving two separate channels: Arm elevation is computed from target distance and

elevation, and arm yaw is computed from target azimuth.

In another study, Ivanenko et al. (2007) suggested that theremight be independent control of
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parameters in spherical representation of the end effector. In particular, they used PCA applied

to elevation angle data and found a strong correlation between the PCA-derived basis functions

of absolute angle basis functions and those of the polar and radial representatons.

These studies have all contributed to our understanding of how the nervous system repre-

sents and coordinates movements. For instance, it seems that the nervous system has some

preference for an absolute frame of reference, and yaw and elevation angles seem to be keys to

joint coordination. The validation of these insights is essential. To help validate these coordinate

frame insights, in this work FADA will be used to find sources ("basis functions") in both joint-

space, represented by both the relative/anatomical and the absolute/orientation angles, and in

task-space, represented by the end-point variables. Additionally, there still remain open ques-

tions related to the coordination of movement. Importantly, the intersegmental coordination of

the arm has been neglected for the most part in the literature, which is a primary focus of this

study.

Arm Model

To model the arm we first can consider that an unconstrained rigid object in 3D space has six

DoFs in total: three translational and three rotational. However, when there are multiple linked

segments the number of DoFs is reduced due to kinematic constraints. For example, assuming

no translational movements at the shoulder (glenohumeral joint), the upper arm has three DoFs,

which can bemodeled by a ball-and-socket joint allowing flexion/extension, abduction/adduction

and internal/external rotations. The forearm,modeled as a hinge joint, adds twomoreDoFs: flex-

ion/extension, and pronation/supination. Thus, there are a total of five DoFs for the simplified

human upper limb (more if we consider the wrist and fingers). However, in the current study, we

used a simpler model for the arm (i.e., not including elbow pronation/supination), with two rigid

links joined at the elbow joint, ending with only 4-DoFs.

Specifically, our arm model and the angles we used as defined in Soechting et al. (1995), is

illustrated in Figure 2. In this model, the first angular rotation (�) is about the Z-axis and deter-

mines the yaw angle. The second angular rotation (�) is about an axis perpendicular to the arm

plane (this is the plane spanned by the vectors of the upper-arm and forearm, the arm plane

is the lateral X-axis if there is zero yaw) and determines the arm’s elevation. The third angu-

lar rotation (� ) is about the humeral axis. This rotation does not change the elbow location but

does affect the wrist location in space and the arm plane. Finally, � is the angle of flexion of the

forearm, � = 180◦ corresponding to full extension.

It should be noted that Figure 2b contains two more angles: �, the angular elevation of the

forearm, and �, the forearm yaw angle (just like � for the upper-arm). Thus, two sets of variables,

or representations, can be devised to fully describe the arm configuration. The first representa-

tion (�, �, � , �) combines external (absolute) and internal (relative) reference frames (see Fig. 2a).

In this case � represents the upper-arm elevation angle, � is the azimuth angle, � the humeral

rotation angle, and the elbow flexion-extension angle is given by �. The second representation

(�, �, �, �) is given in a completely external frame of reference (see Fig. 2b). Here, � and �, de-

note the elevation and azimuth of the upper-arm, respectively. We term the first representation

anatomical or relative, and the second is termed absolute or external.

Dimensionality Reduction

Movement data (such as joint angles or muscle activations) generally has high dimensionality.

However, regardless of the level of complexity, every arm movement is ultimately mapped to

three Euclidean coordinates describing the hand position. Therefore, a set of correlations or

a coordination pattern must exist in these higher motor levels that constrains any seemingly

excess DoFs. The challenge is to identify these correlations.

One of the most well known methods for identifying coordination patterns is the Principal

Component Analysis (PCA) method. This method involves a mathematical procedure that maps
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possibly correlated variables onto a small set of uncorrelated variables called principal compo-

nents. The basic underlying assumption for PCA is that the observed data (xi(t)) can be modeled

as a linear combination of orthonormal basis functions (sj ), the vectors of which are the eigen-

vector of the covariance matrix representing the data, with time dependent mixing coefficients

for the PCs.

Anotherwell knownmethod for dimensionality reduction is independent component analysis

(ICA). In contrast to PCA the underlying model assumed by ICA uses a time dependent basis

functions sj(t) with constant mixing coefficients. More importantly, here the basis is required

to be independent, rather than uncorrelated as for PCA, which is a stricter constraint. ICA has

classically been used as a solution to the cocktail-party problem (Cherry, 1953). This problem is a

special case of the blind source separation (BSS) problem.

An alternate version of the BSS problem is anechoic blind source separation. Similarly to

ICA, this method aims to solve the BSS problem, while allowing for the addition of time delays

between the sources

xi(t) =

n∑
j=1

�ijsj
(
t − �ij

)
i = 1,… , m (1)

The model expressed in (1) appears in acoustic equations where a reverberation-free envi-

ronment is modeled, i.e. the sensors only receive attenuated sounds with different arrival times.

Thusmixtures of the form (1) have been termed anechoicmixtures. A solution for a systemassum-

ing a non-linear model such as described in (1) was proposed by Omlor and Giese (2011). The

solution assumes that the sources are uncorrelated and uses properties of the stochasticWigner-

Ville spectrum (WVS) (Matz and Hlawatsch, 2003). The solutionwas obtained by representing the

signals in the time-frequency domain using the Wigner-Ville transform, which is defined by

W f (x, !) ∶= ∫ E

{
f
(
x +

t

2

)
f
(
x −

t

2

)}
e−2�i!tdt (2)

where E denotes the expected value and the bar denotes the complex conjugate. Applying

this transformation to Eq. (1) and exploiting the (approximate) independence of the sources, one

obtains

W xi(�, !) = |�|2
ij
W sj(� − �ij , !) (3)

Assuming that the observed data coincide with the mean of the distribution (xj ≈ E(xj)) one

can compute the zero moment of Eq. (3) and obtain the following two equations:

||xi
||2 (!) =

n∑
j

|�|2
ij

|||sj
|||
2

(!) (4)

and

||xi(!)
||2 ⋅ )

)!
arg

{xi

}
=

n∑
j

|�|2
ij
⋅ ||si

||2 ⋅
[
)

)!
arg

{sj
}
+ �ij

]
(5)

where  is the Fourier transform operator. Non-negative ICA was used to solve Eq. 4, the

results of which are used in Eq. 5 in order to extract the corresponding time delays. The latter

was solved in an iterative manner as detailed in the above mentioned papers. Therefore, the

solution of the above system of equations results in the requested set of sources (sj ) and the

corresponding time delays (�ij ).

This method models high-dimensional signals as a linear superposition of a small set of

source functions, which can have additional fixed temporal delays. The solution results in a

set of sources for each space to which it was applied. Then, for each movement type the proper

mixing weights and time delays were determined. Thus, this approach can allow for a simple

computational solution to the redundancy problem, based on the assumption that the same

basis functions underly the joint and task spaces.
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Here, a new approach to resolving the redundancy problem was suggested that ex-

ploits dimensionality reduction called FADA (Fourier-based Anechoic Demixing Algorithm)

(Chiovetto et al., 2016), which is based on a computationally efficient form of anechoic demix-

ing algorithm for the analysis of band limited signals Omlor and Giese (2007). This was originally

derived from amore general anechoic demixing algorithm developed byOmlor and Giese (2011).

FADA is a highly efficient dimensionality reduction approach and an alternative way to character-

ize motor primitives based on the idea that they express invariance across time. In particular, in

this work we use FADA to produce basis functions (or sources) for either the task or joint spaces.

This can help researchers gain a greater understanding of how the CNS possibly generates

desired task space trajectorieswith appropriatemovements of redundant joint DoFs. Specifically,

FADA provides basic temporal patterns or functions sp(t) which are combined or superposed to

reconstruct a set of temporal signals. Hence, the temporal decomposition is mathematically

described as:

xl
m
(t) =

n∑
p=1

= cl
mp

⋅ sp(t − � l
mp
) + residuals (6)

In this equation xl
m
(t) is the value of the m-th DoF at time t in trial number l, and the corre-

sponding scalar mixing weights cl
mp
change between trials of different types (experimental condi-

tions), P signifies the total number of temporal primitives. This model also allows for time shifts

between the temporal basis functions for different DoFs, which are captured by the variables

� l
mp
. The time delays and linear mixing weights are typically assumed to vary over trials, while it is

assumed that the basis functions sp(t) are invariant Chiovetto et al. (2016). Details of the iterative

FADA algorithm are described in more detail in the Source Separation section of the methods.

Materials and Methods

Motion Capture & Data Processing

Armmovements were recorded for fifteen subjects (aged 28-35) who volunteered for the exper-

iment. None reported previous hand injuries and all gave their informed consent prior to their

inclusion in the study.

Subjects were grouped based on the three motion sets they completed: one group had four

subjects who each conducted all motion types (ALL), one group had six subjects who only com-

pleted the figure eight motion (FE), and one group had 5 subjects who only completed the planar

ellipse motion (PE), though at different orientations in space. For future reference these groups

will be referred to as ALL, FE, and PE, respectively.

Subjectswere instructed to freely draw these series of shapes in three-dimensional (3D) space

repetitively at a comfortable pacewith their dominant arm. Tenpathswere drawnby the subjects

in the ALL group: planar ellipse (PE), vertical ellipse drawn on the sagittal plane (PE-V), ellipse

drawn on the frontal plane (PE-F), planar ellipse drawn on a plane rotated 45◦ off the sagittal

plane (PE-45V), ellipse drawn on a plane rotated 45◦ off the frontal plane (PE-45F), horizontal

figure-eight (FE), vertical figure-eight drawn on the sagittal plane (FE-V), figure-eight drawn on

the frontal plane (FE-F), bent-ellipse (BE), double bent-ellipse (DBE) and up-down movements

(UD). The models of the shapes are presented in Figure 3. The drawing instructions did not

involve the experimenter demonstrating the movements to avoid biasing the subjects towards

a specific behavior. Therefore, we prepared wire frames models for the different shapes and

showed them to the subjects before the recordings of each shape began.

Subjects were seated on a wooden chair with a high rigid back rest. Movements of the ALL

group were recorded using a Polhemus "Liberty" electromagnetic spatial tracking system where

sensor positions and orientations were collected at 240 Hz and preliminary experiments were

conducted to measure the accuracy of the tracking system, and the error was found to be at

most 0.3mm. Eight sensors were positioned on the arm: one on the wrist, two on the forearm so
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as not to be co-linear with the wrist marker, two on the upper-arm, one on the shoulder (again,

ensuring these three sensors are not co-linear), one on the chest near the collarbone, and one

on the chair acting as reference. The tracing of each shape was recorded continuously for 20

seconds. For the ALL group two 20-second trials were carried out for each shape per subject.

Thus, the data base of movement for the ALL group consists of 4 (subjects) × 10 (shapes) × 2

(trials per subject) = 80 recordings (see example PE data in Fig. 4).

Meanwhile for the PE and FE groups, movements were recorded using a Vicon IR motion

capture system. We analyzed the data using a simplified arm model in which the end-effector is

at the center of the wrist, the task space has 3 DOFs and the configuration space has 4 DOFs (3 in

the shoulder and one in the elbow). In each trial subjects had to draw the shape for 25 seconds

with their healthy, dominant right hands.

Figure 3: Wire frame models of the recorded shapes, as shown to subjects prior to data collection. These were the main

shapes, but the FE and PE shapes were also collected at different orientations.

Thedatawere interpolated formissing samples, then approximatedby smooth analytic curves

(to allow high-order differentiation). The continuous data were then segmented into individual

repetitions. Though the use of two different motion tracking systems could produce slight differ-

ences between the subject groups, we believe it shouldn’t significantly impact the results of our

source reference frame or timing comparisons.

Joint Angle Extraction

Joint angle calculation is not a trivial task. First, one has to identify the centers of rotation (COR)

of the arm located at the shoulder and elbow, and in some cases it is not possible or simple

to place a marker exactly on the joint center. This problem is crucial to the study of human

movement and biomechanics, including the calculation of joint angles. Many approaches have

been used in the literature to try to address this problem. We have chosen to use an extension

of the technique that was described in Gamage and Lasenby (2002).

Source Separation

While there are many methods of performing source separation such as PCA and ICA, in this

work we used the FADA algorithm as first presented in Chiovetto et al. (2016). This algorithm

can allow for source separation without constraints but is also flexible to allow for parameter

non-negativity or other constraints.
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Figure 4: Data of the planar ellipse (PE) shape for the four subjects from the ALL group. Each subject completed two 20-

second trials, shown in 1) blue, 2) orange. Note variability in the traces for each subject.

Specifically, this iterative algorithm is as follows:

1. Non-negative ICA is used to solve the equation

|crk|2 =
U∑
u=1

|aru|2|v2uk| (7)

with r = 0, 1, . . . R and k = 0, 1, . . . K. Non-negative matrix factorization [34, 41] can also be

used to solve this equation instead of ICA.

Specifically here, the mixing weights are represented by aru, while crk and vuk represent the

coefficients of the Fourier expansion of the r-th joint angle and u-th temporal source signals,

respectively.

2. To obtain the phase shifts, the Fourier cofficients are then updated by solving the non-

linear least square equation

min
Φ

||C − Z(�)||2
F

(8)

where F is the Frobenius norm and C and Z are given as Crk = crk and

Zrk =

U∑
u=1

arue
ik�uk |vuk|ei�vuk

3. The weights aru and delays �ru are then identified for each signal yr(t), by minimizing the

cost function:

argmin
ar ,�r

||yr(t) − f (t, �r)
′
ar||2F (9)

Here the source functions fu(t) are kept constant (and assumed to be uncorrelated), and it is

assumed the time delays are independent. Specifically, the vector f (t, �r) is the concatenation of

these functions including the time shift associated with each DoF r.

Inverse Kinematics

In this section we show that given two arbitrary spaces (possibly of different dimensionalities)

that share a similar set of basis functions, one can transform between the spaces using the

basis functions as mediators. This idea was originally proposed based on some of our previously
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obtained results. Specifically, we would like to show that there is a mechanism to determine the

joint-space trajectory given a desired trajectory in task-space, and assuming that the task-space

and joint-space movements share the same set of sources. We begin by formally defining the

problem itself.

Problem Statement

Asmentioned, we assume a nonlinearmodel underlying both the joint and task-spaces. Thus,

the basis functions can also be shifted in time. Let the shift operator U�, applied on a periodic

function f , be defined as follows

(U�f )(t) ∶= f (t − �) (10)

The shift operator U essentially delays the function f (t) by � in a circular periodic manner.

This is actually achieved through the convolution operation

(U�f )(t) = ∫
R

�(t − � − s)f (s)ds

where �(x) is the Dirac delta function. The above definition is for the one dimensional case, and

next we define a more complex operator for the multidimensional case.

Let f̄ =
[
f1(t), f2(t), f3(t)

]T
be a vector of periodic functions (the extracted sources). We define

the shift operator matrix as follows

 =

⎛
⎜⎜⎜⎝

U�11
U�12

U�13

U�21
U�22

U�23

U�31
U�32

U�33

⎞
⎟⎟⎟⎠

(11)

where U�ij
are the standard shift operators as defined above (Eq.10). Then, applying  on f̄ we

get,

( f̄
)
(t) =

⎛
⎜⎜⎜⎝

(
U�11

f1

)
(t) +

(
U�12

f2

)
(t) +

(
U�13

f3

)
(t)(

U�21
f1

)
(t) +

(
U�22

f2

)
(t) +

(
U�23

f3

)
(t)(

U�31
f1

)
(t) +

(
U�32

f2

)
(t) +

(
U�33

f3

)
(t)

⎞
⎟⎟⎟⎠

⇓

( f̄
)
(t) =

⎛
⎜⎜⎜⎝

f1

(
t − �11

)
(t) + f2

(
t − �12

)
(t) + f3

(
t − �13

)
(t)

f1

(
t − �21

)
(t) + f2

(
t − �22

)
(t) + f3

(
t − �23

)
(t)

f1

(
t − �31

)
(t) + f2

(
t − �32

)
(t) + f3

(
t − �33

)
(t)

⎞
⎟⎟⎟⎠

Thus, the problem is to define the inverse of  ( −1) such that if

b̄(t) =
( f̄

)
(t)

then applying  −1 will result in ( −1
b̄
)
(t) = f̄(t)

The problem can be slightly extended to the weighted version of the operator  . Let,

w =

⎛
⎜⎜⎜⎝

a11U�11
a12U�12

a13U�13

a21U�21
a22U�22

a23U�23

a31U�31
a32U�32

a33U�33

⎞
⎟⎟⎟⎠

(12)

where aij are weights. Applying w on f̄ is just

(w f̄) (t) =
⎛
⎜⎜⎜⎝

a11f1

(
t − �11

)
(t) + a12f2

(
t − �12

)
(t) + a13f3

(
t − �13

)
(t)

a21f1

(
t − �21

)
(t) + a22f2

(
t − �22

)
(t) + a23f3

(
t − �23

)
(t)

a31f1

(
t − �31

)
(t) + a32f2

(
t − �32

)
(t) + a33f3

(
t − �33

)
(t)

⎞
⎟⎟⎟⎠

So similarly to the previous inverse,  −1
w

should be defined. In effect, having such an inverse

applied on, say the task-space trajectory, we will be able to obtain the sources in return.
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Simplified Case (without time delays)

We begin with a simpler version of the above problem, in which the sources are not shifted

in time, i.e., �ij = 0. Let s = (s1, s2, s3) be the vector of the extracted sources. The sources are

assumed to be identical for both spaces, thus the joint angles, q, can be expressed as

q4xp = A4x3

⎛⎜⎜⎜⎝

s1

s2

s3

⎞⎟⎟⎟⎠3xp
= AsT (13)

Similarly, using the same sources the Euclidean coordinates, x, can be expressed as

x3xp = B3x3

⎛
⎜⎜⎜⎝

s1

s2

s3

⎞
⎟⎟⎟⎠3xp

= BsT (14)

where A and B are the matrices of amplitudes associated with the sources, and p is the num-

ber of points in the path.

In order to attend to the first case of a direct mapping between joint and task-spaces through

the forward kinematics (fi ∶ Q → X), observe that the dimension of B is 3 × 3. Thus, in a well-

behaved case and relying on the independence of the sources, B can be regarded to be invertible

and therefore

B−1x = sT (15)

Substituting s from Eq.(15) into Eq.(13) we obtain:

q = AB−1x (16)

This is an inverse mapping of positional variables (not velocities). Note that although the

sources s were the original mediators, they do not appear in the transformation and only their

amplitudes are required.

The second case, involving themapping of instantaneous positions is a bit more complicated.

Specifically, the mapping between joint and end-effector velocities (or instantaneous position)

for forward kinematics is given by

dr = Jdq (17)

with J as the Jacobian of the forward kinematics.

Using Eq.(17), Eq.(13) can be re-written as follows:

ẋ = J3x4
d

dt
q = J

d

dt
(AsT ) (18)

ẋ = J
[(

d

dt
A
)
sT + A

d

dt
sT
]

(19)

since
d

dt
A = 0

ẋ = F ṡT (20)

where F = JA is of dimensions 3 × 3 and potentially invertible.

This takes the form of a coordinate transformation into a space that can be uniquely inverted

to the task-space. Thus the first derivative of the joint angles, q̇, can be expressed as a linear

combination of a new set of sources ṡ. We find this has the form

q̇ = KṡT (21)
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where K is a matrix containing the coefficients of ṡT , and K = AB−1F .

So far though, the solution is only for the degenerate case where time delays are ignored.

This is not a realistic state, and it will be remedied in the next section.

Inverse Solution

Next, we address how to integrate the required time shifts into the inverse transform, using

a circular shift operator.

A convolution operator A is formally defined as

(Af )(t) = ∫
R

k(t − s)f (s)ds, t ∈ R (22)

The function k in this context is referred to as the convolution kernel of A. Let  ∶ L2(R) → L2(R)

denote the Fourier transform,

(f )(x) ∶= f̂ (x) ∶= ∫
R

f (t)eitxdt, x ∈ R (23)

and let −1 ∶ L2(R) → L2(R) be the inverse of  , given by
(−1g)(t) =

1

2� ∫
R

g(x)e−itxdx, t ∈ R (24)

The operator (22) can formally be written in the form

A = −1k̂ (25)

or equivalently, (Af )ˆ(x) = k̂(x)f̂ (x), x ∈ R. The function k̂ is called the symbol of the operator

(22), (25).

Now we consider a special class of convolution operators on L2(R).

Fix � ∈ R and let U�, a bounded linear operator
1, be the shift operator defined by

(U�f )(t) ∶= f (t − �), t ∈ R

Since

(U�f )ˆ(x) = ∫
R

f (t − �)eitxdt = ∫
R

f (s)ei(s+�)xds = ei�xf̂ (x)

Using the Dirac delta function �(t), we have

(U�f )(t) = ∫
R

�(t − � − s)f (s)ds, t ∈ R, (26)

which shows that U� is a convolution by the kernel �(t − �). The convolution operator is often

expressed as a binary operation between a function f and a kernel k denoted by

f ∗ k = ∫
R

f (s)k(s − t)ds

Therefore, according to the above definitions and properties, it is clear that the convolution com-

mutes with the shift operator (translation), that is

U�(f ∗ g) = (U�f ) ∗ g = f ∗ (U�g)

To connect this to our problem, we assume that each signal can be represented a follows:

zi(t) =

3∑
j=1

aijsj
(
t − �ij

)

1A linear transformation L between normed vector spaces X and Y for which there exists some M > 0 such that for all

v ∈ X, ‖Lv‖Y ≤ M‖v‖X
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Let us assume that a similar set of sources underlie the joint-space and task-space and represent-

ing the joints and hand behavior by (13) and (14), respectively. Consider first the representation

of a one dimensional signal in terms of the convolution and shift operators,

z(t) =

3∑
i=1

aisi
(
t − �i

)
=

3∑
i=1

aisi(t) ∗ �(t − �i)

⇓

z(t) =

3∑
i=1

ai(U�i
si)(t)

where U�i
is the shift operator described in (26). We can now extend the one dimensional case

to a multidimensional space.

Let

xi(t) =

3∑
j=1

aijsj
(
t − �ij

)
, i = 1…3 (27)

where xi are the Euclidean coordinates of the hand. Thus, the hand coordinates can be repre-

sented by a mixture (sum) of the weighted (aij ) and delayed (by �ij ) sources (sj(t)). Equation (27)

can be expressed differently using the convolution operator, as follows

xi(t) =

3∑
j=1

aijsj(t) ∗ �
(
t − �ij

)
(28)

where �(t) is the Dirac delta function, and the symbol ∗ stands for convolution. Now, applying

the Fourier transform on both sides of equation (28), we obtain

 [
xi(t)

]
(�) = 

[
3∑

j=1

aijsj(t) ∗ �
(
t − �ij

)]
(�) (29)

where  is the fourier transform defined by Eq.(23). Due to the linearity of the Fourier transform,

equation (29) can be rewritten as

 [xi(t)](�) =

3∑
j=1

aij [
sj(t) ∗ �(t − �ij)

]
(�)

⇓ Convolution theorem

 [xi(t)](�) =

3∑
j=1

aij [sj(t)](�) ⋅  [�(t − �ij)](�) (30)

The Fourier transform of the delta function is

 [�(t − �ij](�) = ∫
∞

−∞

�(t − �ij)e
−2�it�dt = e−2�i�ij � (31)

Substituting equation (31) into (30) we get,

 [xi(t)](�) =

3∑
j=1

aij [sj(t)](�) ⋅ e
−2�i�ij � (32)

The system of equations (32) is the frequency domain version of the temporal domain system

(27). In this domain, the inverse is more easily expressed.

Let the matrix

Aij(�) = aije
−2�i�ij � (33)
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be thematrix that contains the information of themixing coefficients of the sources and the their

corresponding time-delays. Then, system (32) can be expressed in matrix form as

⎡⎢⎢⎢⎣

 [x1(t)](�)

 [x2(t)](�)

 [x3(t)](�)

⎤⎥⎥⎥⎦
= A(�)

⎡⎢⎢⎢⎣

 [s1(t)](�)

 [s2(t)](�)

 [s3(t)](�)

⎤⎥⎥⎥⎦
(34)

where A(�) = [Aij(�)] is a 3 × 3matrix. Then, by inverting A we get,

⎡
⎢⎢⎢⎣

 [s1(t)](�)

 [s2(t)](�)

 [s3(t)](�)

⎤
⎥⎥⎥⎦
= A−1(�)

⎡
⎢⎢⎢⎣

 [x1(t)](�)

 [x2(t)](�)

 [x3(t)](�)

⎤
⎥⎥⎥⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
b= (b1 , b2 , b3)

T

=

⎡
⎢⎢⎢⎣

b1(�)

b2(�)

b3(�)

⎤
⎥⎥⎥⎦

Applying the inverse Fourier transform on both sides of the above system leads to

⎡
⎢⎢⎢⎣

−1[ [s1(t)](�)](t)

−1[ [s2(t)](�)](t)

−1[ [s3(t)](�)](t)

⎤
⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎣

−1[b1(�)](t)

−1[b2(�)](t)

−1[b3(�)](t)

⎤
⎥⎥⎥⎦

⇓

⎡
⎢⎢⎢⎣

s1(t)

s2(t)

s3(t)

⎤
⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎣

−1[b1(�)](t)

−1[b2(�)](t)

−1[b3(�)](t)

⎤
⎥⎥⎥⎦

(35)

and we have the solution for the inverse problem. The solution here, is having the sources them-

selves extracted as a function of the task-space.

An important note to mention is that the solution above assumes that the matrix A(�) is in-

vertible. The matrix A might not be always invertible, but its properties can be analyzed and

this has been considered and presented in Appendix A. This analysis ultimately showed that A

is invertible if and only if |A| ≠ 0.

Thus far, we have shown that provided two spaces share a basis it is possible to go back and

forth between the spaces. In fact, the proof itself illustrates this methodology. Furthermore,

the CNS could hypothetically utilize this to solve the inverse kinematics problem using the basis

functions as mediators between the spaces. However, there are some knowledge gaps left to

fill. Assume that we are planning a movement in task-space, and would like to produce the

corresponding joint-space trajectory. The results of the previous section state that the joint-

space trajectory can be expressed by:

qi(t) =

3∑
j=1

�ijsj
(
t − �̃ij

)
(36)

where �ij and �̃ij are the appropriate weights and time shifts, respectively. Furthermore, similarly

to the process in the previous section which concluded in Eq.(33), the time delays �̃ij can be

pulled out of the sources and be represented. Then, sj can be replaced with Eq.(35), thus qi(t) is

expressed in terms of xi(t) (the task-space)

s(t) ≡ s(t, x)

⇓

qi(t, x) =

3∑
j=1

�ijsj
(
t − �̃ij , x

)

Indeed, the above solution shows how the joint-space(t) trajectories can be expressed in terms

of the task-space trajectories (t). However, the parameters �ij and �̃ij are not an outcome of the

above process and need to be determined. In the next section, we will investigate the sources

and their phase shifts, which will provide us with clues on how the time delays are determined.
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Source Analysis

Each shape is described by a set of task space sources and a set of joint space sources. These

sources can be compared in two major ways: a) by analysing how similar the source shapes are

to one another and b) by analyzing how the sources are shifted in time, or phase, between each

other.

Source Shape Analysis

The joint-space sources (both representations) were comparedwith those of the task-space both

visually and numerically (see Figure 8 for description). To aid visual comparison between the

sources they were normalized using their 2 norms. Then, the cross-correlation was computed

between the different sources (each source in joint-space was cross-correlated with all other

sources in the task-space) to both find a match between sources and shift them in time with

respect to each other to overlay the sources in one plot. The cross-correlation between two

curves f and g is defined as

(f ⋆ g)(�)
Def
= ∫

∞

−∞

f ∗(�)g(t + �)d�

where f ∗ denotes the complex conjugate of f .

The cross-correlation similarity measure index (similarity index or SI for short), defined as

the maximum correlation value between two signals, was compared between each task-space

source and its joint-space counterpart, given by the anatomical and absolute orientation-angle

sources. For very similar signals, values that are close to 1 will be achieved at zero (or close to

zero) time lag.

We performed a two-way ANOVA test to determine if the differences between the task and

joint space sources were statistically significant, while accounting for the differences due to sub-

jects and selected movement shapes. The factors that were considered for our ANOVA were

the angle type (absolute vs anatomical angle), the shape (i.e. FE vs PE etc) and the subject. Sub-

ject was considered a random factor and was nested within the shape group, as some subjects

only completed movements of a single shape. The null hypothesis in this case was that there

was no difference in the source correlations (i.e. neither set of joint space sources was more

closely correlated to the task space sources). The results of this analysis would simply signify

that there is a significant difference in the source correlations, but the magnitude and direction

of that difference would need to be analyzed more carefully using other methods and post-hoc

comparisons.

We also used the sign test to evaluate if there are statistically significant differences between

sources. This is analogous to a non-parametric t-test, with no assumptions of a normal distribu-

tion. In particular, the sign test looks at whether one signal (or in this case, one source) is sta-

tistically larger or smaller than another. This is achieved by forming a vector where each entry

indicates if the corresponding entry for one signal, i.e. source one, is smaller than the matching

entry for signal two, in this case source two. The null hypothesis here is that the distributions

are equal, and therefore there is an equal likehood for entries from one signal to be larger than

entries in the other signal. The proportion of entries in the comparison vector that indicate one

source being smaller than the other can be compared using using binomial distribution tables.

For two matching sources the proportion would be 0.5.

So we use a normal approximation of the binomial distribution to calculate the z score. The

z-score of the data could then be compared to the z-score of the null probability (we made sure

that the estimated probability p and the size of the data nwere consistent with n⋅p> 5 and n⋅(1-p)

> 5.) to determine the p-value. Values of p < 0.05 were considered significant and indicated that

the sources were not statistically equivalent.

Source Phase-Shift Analysis

Eachmovement cycle for an individual shape is distinct. This distinction becomes apparent when

considering theweights and the time-delays of the sources that generate themovement. We per-
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formed an analysis to represent patterns of the time-delays (�ij ), assuming that these are not arbi-

trarily determined, and to expose correlations between the time-delays for different sources, i.e.

phase-shifts. In particular, we will carry out the time-delay analysis for the absolute joint-space

and task-space representations. Phase-shifts for 3D shapes and planar shapes will be separately

considered.

Consider the following system

q1(t) = �11s1
(
t − �11

)
+ �12s2(t − �12 ) + �13s3(t − �13 )

⋮

q4(t) = �41s1(t − �41 ) + �42s2
(
t − �42

)
+ �43s3

(
t − �43

)
(37)

x(t) = �51s1
(
t − �51

)
+ �52s2

(
t − �52

)
+ �53s3

(
t − �53

)

⋮

z(t) = �71s1(t − �71 ) + �72s2
(
t − �72

)
+ �73s3

(
t − �73

)

The phase-shifts can be analyzed across two levels. Firstly, phase-shifts between sources of the

same degree of freedom were examined, i.e., �ij − �ik (see for example the blue blocks in Eq.(37):

�12 − �13). Secondly, phase-shifts between different degrees of freedom in a single source were

examined, i.e., �ij − �kj (for example, red blocks in Eq.(37): �41 − �71). Constant phase-shifts of

the former type, if appearing, may imply coordination between different sources. One can think

of the sources as movement generators, and thus constant phase-shifts would be the result of

coordination at the level of these generators.

The second type of phase-shifts can appear due to coordination between different degrees of

freedom, such as joint level coordination. The phase-shifts are computed as the absolute value

difference between the sources’ phases, corrected to their relative percentage of one drawing

cycle (
|'i−'j|

p
, where p is the number of sample points in a movement cycle).

Results
In this section we will show the results of the source separation for our data.

Source Analysis Results

Sources were extracted from recorded data from all subjects. Visual inspection of these sources

can provide insight into the significance of the anatomical and absolute angles.

Individual Source Examples

In Figure 5 example source results for each shape are shown for a typical subject in the ALL

test group (for group definitions see methods section 3.1 on the motion capture). Meanwhile,

Figures 6 and 7 present example source results for individual subjects from the PE and FE groups,

respectively. Across all subject groups the absolute angle sources appearmore similar to the end

effector sources than the anatomical angle sources.

Note that the source shapes are somewhat affected by the orientation of the armmovements

during the experiment. For instance, the PE group were not constrained to draw ellipses on

planes of precise orientation (and thus there was variability in the orientation of movements

combined to find the sources), whereas the sources for the PE shapes from the ALL group were

collected at precise orientations for which separate sources were computed. We believe this is

the reason that there is a phase shift between sources of the PE group and the sources for the

PE shape from the ALL group, even though the shape of the sources are similar (see Figure 7 and

6).
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Figure 5: Sample source results from a typical subject from the ALL test group. Example sources are shown for the four

shape types: a) PE or Planar Ellipse, b) FE or Figure Eight, c) BE or Bent Ellipse, d) DBE or Double Bent Ellipse. For each shape,

sources based on the anatomical angles (shown on the left) and sources based on absolute angles (shown on the right) are

compared to the end effector task space sources (see dashed lines). Using visual inspection alone it is clear that the absolute

angle sources generally provide a better fit for the task space sources in this example, particularly for the PE and FE cases.

Figure 6: Sample source results for a typical subject from the PE test group. As shown in Figure x the anatomical angle

sources are shown on the left and the absolute angle sources are shown on the right, both compared to the end effector

task space sources (shown in dashed lines). Note that the shape is similar to that of the PE sources for the ALL subject.

However, the sources are phase shifted compared to the consistent cosine graph shape of the ALL subject.

Figure 7: Sample source results for an FE test group subject. Note differences between the shapes of these sources and

those for the FE shape of the ALL example subject.
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Overall Source Shape Results

Figures 8 through10 show the sources fromeach recorded shape, as extracted from the recorded

data for all subjects. For each shape, three sources were extracted for both joint representations

aswell as for the task-space and overlays of the task-space extracted sources are shownon top of

the sources extracted from the joint-space (with the left column showing the anatomical sources

and the right showing the absolute).
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Figure 8: Extracted sources for the Bent Ellipse (top) and Double Bent Ellipse (bottom) shapes - The left column shows

results for the joint-space using an anatomical representation, the right column shows results for the joint-space using an

absolute representation. The task-space sources are overlaid over the sources of the anatomical angles representation (left

column) and over the absolute angles representation (right column). Solid lines represent joint-space sources and dashed

lines designate task-space sources.

Inspecting the overlays of the sources reveals a striking similarity between the task-space

sources and the joint-space sources when represented by the absolute angles (orientation).

There is a high degree of matching between these two sets of sources, and potentially one set

of sources could be used to explain both the task-space and the joint-space when represented

in its absolute orientation form.

This observation is supported by the cross-correlation similarity index values between the

sources as they appear in Table 1. See the Source Shape Analysis methods section for explana-

tion of how the similarity index is computed. This table shows the difference between the simi-

larity index for the absolute angle sources compared to its counterpart end-effector (task-space)

sources and the similarity index for the anatomical angle and end-effector sources. In particular,

a distinction wasmade between the cases when the absolute angle sources had higher similarity

to the end-effector sources than the anatomical angle sources (as signified by the positive values,

shown in dark green). The results show that inmost cases the absolute angle sources weremore

highly correlated with the task-space sources than were the anatomical angle sources, as signi-

fied by the values greater than zero (with higher values signifying greater differences in similarity

indices between the two source types).

As discussed in the methods section, the sign test and ANOVA statistical analyses were also

conducted to ascertain statistically whether the anatomical or absolute sources were more sim-

ilar to the end-effector coordinate sources.
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Figure 9: Extracted sources for the figure eight shapes at different orientation. FE-H is horizontal, FE-F is on the frontal plane,

FE-V is on the sagittal plane. The rest of the details are as in Figure 8.

Figure 10: Extracted sources for the Planar Ellipses shapes at different orientations. PE-H is a horizontal ellipse, PE-45°F is

tilted at 45 degrees with respect to frontal plane, PE-F is on the frontal plane, PE-45°V - 45 degrees with respect to sagittal,

and PE-V is on the sagittal plane. The rest of the details are as in the Figure 8.
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S1 S2 S3 Mean

FE X0 Y0 0.1010 0.026 -0.16 -0.011

FE X90 Y0 0 0.2240 0.0070 0.770

FE X0 Y90 0.007 0.011 0.085 0.034

PE X0 Y0 .001 0.054 0 0.018

PE X45 Y0 0 0.009 0 0.004

PE X90 Y0 0 0.001 -.005 -.002

PE X0 Y45 0.615 0 0.034 .217

PE X0 Y90 .36 0 .008 .122

BE .005 .1460 .006 .052

DBE .099 .71 .114 .308

Table 1: Correlation Differences. The cross correlation was computed between the anatomical angle sources and the task

space sources, and a second cross correlation was computed between the absolute angle sources and task space sources.

The difference between these two cross correlation measures are presented here. The last column reports the differences

between the means of the correlation indices. Positive values (shown in dark green) represent cases where the absolute

angles have higher correlation with the task sources. Negative values (shown in light green) represent instances where the

anatomical angles have higher correlation with the task sources.

T ype Sℎape Subject(sℎape)

p-values 0.0054 2.95 ∗ 10−7 0.2674

factor fixed fixed random

Table 2: Results of ANOVA. The p-values for the fixed reference frame and shape factors are shown, as well as for the subject

factor which is nested within shape.

The sign test used a normal approximation of the binomial distribution to calculate the z-

score that would result for a probability of 0.5. This is equivalent to there being no difference

between the two distributions. The results of the sign test yielded a p-value of p = 0.0018, which

was statistically significant, assuming � = 0.05. Therefore, we conclude that there is a statistically

significant difference between pairs of observations, which in this case represent the anatomical

and absolute angle sources.

Meanwhile, the results of our two-way ANOVA are shown in Table 2. The p-values for "Type"

(i.e. absolute vs anatomical angles) and for "Shape" (i.e. PE, FE, DBE, or BE) were 0.0054 and

2.95 ∗ 10−7 respectively, therefore these two factors are significant. Meanwhile, the random

factor "Subject", which is nested within the Shape factor, had a p-value of 0.2674, meaning this

factor was not significant.

Source Phase-Shift Results

Here we present results of the time-delay analysis for the absolute joint-space representation

and the task-space, and show that the time delays (�ij ) are not arbitrarily determined and ex-

pose correlations between the time delays, i.e. phase-shifts. Noteworthy results are highlighted.

Essentially, the drawn shapes can be partitioned into 3D shapes (bent-ellipse or double bent el-

lipse) and planar shapes. An example figure showing the BE phase shifts is shown here, but see

Appendix ?? B for the results of the source phase-shifts for other shapes. The average results

results are summarized in Table 3.

3D Shapes

We begin by observing the phase-shifts for the bent-ellipse shape (Figure 11). Interestingly, all

subjects demonstrate similar behavior when inspecting certain phase-shifts. A constant phase-

shift (72.08 ± 4.23 SD2) between the azimuth angles of the upper-arm and the forearm (� − �)

2Hereafter, all average values will be accompanied with standard deviation (SD) values, unless mentioned otherwise and

the sign (SD) will be omitted.
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appears in the first source (s1).

Similarly, the phase-shifts between the upper-arm’s azimuth angle and the lateral direction

(�−x) and the forearm’s azimuth angle and the lateral direction (�−x), are constant for all subjects

(highlighted with yellow in Fig 11 in Appendix B). Moreover, the second source (s2) exhibits phase

locking between the upper-arm and forearm elevation angles (� − �) and between the elevation

angle of the forearm and the upwards direction (� − z) for all subjects (highlighted in blue in Fig

11).

Figure 11: Bent Ellipse (BE) phase-shifts. The plot shows the phase shifts between the azimuth angle of the upper arm, �,

azimuth angle of the forearm, �, elevation angle of the upper arm, �, and elevation angle of the forearm �. Each source is

represented by one column. For each source all possible phase-shifts between the DOFs are presented in rows. Each point

in the plot represents one movement cycle. The horizontal axes denote the number of recorded cycles. Yellow and blue

highlight behavior of interest, namely similar phase-shifts for all subjects. Yellow designates lateral related variables and

blue highlights vertical related variables.

The values of these phase-shifts are summarized in Table 3. It should be noted that these

values can range between 0 and 200, since one normalized cycle for each shape contains 200

sample points. Thus, although the standard deviations in the table appear in units of sample

points, it is better to view them as percentage of one cycle duration in order to assess how large

they are. This means that standard deviations of 10 signify 5% of a cycle duration. That is, the

standard deviations for the BE shape appearing in Table 3 are quite low and generally in the

range of ∼ 3% and less.

Therefore, two main observations should be made. First, similar phase-shifts for all subjects

are maintained not only within task or joint spaces, e.g., � − � but also across the spaces, e.g.,

� − x. Second, one source (s1) maintains the phase-shifts among the azimuthal related variables,

whereas another source (s2) does the same for the elevational related variables. It is as if the

variables of movement are distributed between two channels of control. One for azimuth and

one for elevation. The third source does not seem to play a role in the azimuth or elevation

control, but it may reflect the variations between the cycles and subjects.

This phenomenon repeats itself for the other shapes, however not always to its full effect as
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in the case of the bent-ellipse drawing. When we observe the results for the double bent ellipse

drawing (Figure B.1), we see that the azimuth-related variables are phase locked, just like for the

bent-ellipse shape. Again, the constant phase-shifts for the lateral (azimuth) related variables

are handled by only one source (s2). However, the same is not obtained for the vertical related

variables (also see Table 3).

Planar Shapes

When inspecting planar shapes, one can further divide these into shapes that containmovement

only in one principal plane, (i.e. horizontal or sagittal) and shapes that are drawn on slanted

planes which include movements in both the horizontal and vertical directions. The differences

in the drawing planes observed in the type of phase-locks that emerge will be shown next. When

drawing the figure eight shape in the horizontal plane (for context see Figure B.3 in Appendix B)

one source (s3) maintains a phase lock among the azimuthal related variables.

This can be explained simply by the fact that there is no vertical component to the horizontal

figure eight shape. Table 3 summarizes the phase shifts for the horizontal figure 8 in row FE-H.

Similarly, as would be expected, when drawing the figure eight in the sagittal plane, only

vertical related variables are coupled (Figure B.4). These phase-shifts can be seen in Table 3 in

row FE-V.

Horizontal Vertical

Shift � − � � − x � − x � − � � − z � − z

BE 72.1 ± 4.2 85.4 ± 2.9 13.3 ± 3.04 50.7 ± 5.1 50.1 ± 1.9
(2.1%) (1.4%) (1.5%) (2.6%) (1.0%)

DBE 80.0 ± 10.2 85.1 ± 8.5 7.0 ± 4.8 N/A
(5.1%) (4.3%) (2.4%)

FE-H 95.3 ± 3.6 95.4 ± 3.6 4.0 ± 2.3 N/A
(1.8%) (1.8%) (1.2%)

FE-V N/A 90.7 ± 7.7 4.4 ± 2.8 94.7 ± 6.7
(3.8%) (1.4%) (3.3%)

FE-F 91.7 ± 4.8 93.7 ± 3.9 3.1 ± 1.6 50.3 ± 3.3 50.2 ± 1.5
(2.4%) (2.0%) (0.8%) (1.7%) (0.8%)

PE-H 69.3 ± 23.5 75.6 ± 16.2 15.7 ± 8.1 N/A
(11.8%) (8.1%) (4.1%)

PE-V N/A 76.0 ± 23 15.6 ± 14 78.4 ± 21.6
(11.5%) (7.0%) (10.8%)

PE-F 17.4 ± 15.6 50.3 ± 15.6 9.4 ± 13.0 74.5 ± 18.0 11.4 ± 14.7 27.2 ± 11.5
(7.8%) (7.8%) (6.5%) (9.0%) (7.3%) (5.8%)

PE-45◦V 49.9 ± 18.7 64.3 ± 32.9 13.7 ± 8.5 87.7 ± 12.8 10.7 ± 9.8 92.5 ± 5.4
(9.4%) (16.5%) (4.2%) (6.4%) (4.9%) (2.7%)

PE-45◦F 49.5 ± 16.8 19.7 ± 13.8 27.2 ± 17.5 12.4 ± 14.1 48.1 ± 12.6
(8.4%) (6.9%) (8.8%) (7.1%) (6.3%)

Table 3: Average phase-shifts and SD (±) for the planar horizontal ellipse (PE-H), ellipse drawn in the sagittal plane (PE-V),

ellipse drawn in the frontal plane (PE-F), ellipse drawn on a 45◦ slanted planewith respect to the sagittal (PE-45◦V) and ellipses

drawn on a 45◦ slanted plane with respect to the frontal plane (PE-45◦F). The values in the parentheses stand for the SD as

percentage of one cycle duration.

However, when the figure eight is drawn in the frontal plane, so that the shape has both

lateral and vertical components, an identical phase locking pattern to that of the bent ellipse

shape is observed (compare Figures 11 and C.3). The corresponding phase-shifts can be viewed

in Table 3 in row FE-F. Once again, the SD in Table 3 should be considered as percentage of one

period of a cycle. Thus, the SD for these phase-shifts are mostly less then ∼ 3% of a cycle period.

Next, results for the planar ellipse are shown. In addition to the principal planes (horizontal,

frontal and sagittal), ellipses were also drawn on 45◦ slanted planes off the sagittal and frontal

planes. The results for an example planar ellipse shape can be considered in Figure B.2 (in Ap-

pendix B). Although similar behavior as before can be detected, the variance values of the phase-

shifts are higher with respect to the other shapes as can be observed in Table 3. That is, behav-

ior during ellipse drawing was less consistent than for other shapes, with standard deviations of

roughly 7.5% of one cycle period. It is not clear yet why results for the planar ellipse are worse

than for the other cases. One possibility stems from the fact that the ellipse shape is not a con-
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straining shape. This fact may have led to larger variations in the arm configurations while the

subjects were drawing this shape.

Discussion
The question of how the nervous system controls and coordinates multi-joint movements is es-

sential within neuroscience, as well as extremely important for developing rehabilitation robots

and techniques that can ultimately improve function and movement abilities for individual sub-

jects. In this work, we were concerned with the human arm kinematic redundancy problem.

Specifically, we want to understand how the nervous system controls motion in joint-space to

achieve a desired arm trajectory executed in task-space. This is far from a trivial question, since

the redundancy of the DoFs available in the human arm relative to the 3D task-space DoFs ren-

ders the solution-space to be of very high dimensionality.

Thus, this work has two main results. First, we have shown that using a novel technique, we

can identify sources (functional basis functions) that are shared by the task and joint spaces,

when the joint space is represented in terms of an external reference frame (absolute angle rep-

resentation). Second, we have shown that movement composition from basic sources and using

the same sources at different levels of the motor hierarchy could possibly be the mechanism

that the central nervous system uses to transform between task and joint spaces when solving

the inverse kinematics of the arm while planning a particular movement. Furthermore, these re-

sults have shown that the set of sources, although delayed in time, are not arbitrarily delayed but

are prescribed by couplings (or coordination) between the different degrees of freedom (DOFs).

These results and future directions are discussed below.

Dimensionality Reduction

The sources for the joint and task-spaceswere strikingly similarwhenweapplied the FADA source

separation method. However, this similarity between the two source sets was very strong when

the joint spacewas represented in an external frameof reference (or absolute angles/coordinates),

but significantly less strong when the joint-space was represented in anatomical/relative coor-

dinates. It should be noted that this dimensionality reduction method is unsupervised and no

assumptions were made with respect to the functional form, �, of the sources.

The fact that we were able to represent the joint-space with a similar set and number of

sources as those of the task-space (three in both cases) means not only that the intrinsic dimen-

sionality of the joint-space is the same, but that these spaces share some geometrical properties

and structure. Since these two different spaces share a single set of sources, we were able to

show that one can go back and forth between the joint and task spaces. The sources them-

selves can serve as "mediators" (channels) between the configuration and task spaces. This phe-

nomenon may be used by the CNS as a mechanism to solve the inverse kinematics problem.

It should be noted that the suggested solution is general, in the sense that it does not require

the underlying sources to have specific properties. The only requirement is that the joint and

task spaces share the same set of sources. As long as this requirement is satisfied, they can

be integrated into the inverse kinematics solution regardless of what those sources look like or

what method is used to compute the sources. Thus, the solution is independent of the specific

methodology used for acquiring them. However, this work only lays the groundwork for the

solution and is not yet complete. The correct time-delays for the sources in joint-space need

to be identified. We know that these time-delays are not arbitrary and are constrained by the

specific shapes that are drawn and by the timing imposed on the sources by the task-space.

Phase-Shifts & Coordination

The individual time delays of each source in joint-space need to be determined to produce the

correct trajectories in that space. We have shown that different DOFs both in the joint-space and
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across the joint and task spaces are coordinated with specific time-delays. For a specific pairing

of variables, we showed that specific phase-shifts exist for all subjects and trials.

Specifically, we have shown that variables related to lateral movement (azimuth) tend to be

phase-locked by one source, and variables related to the elevation (i.e. vertical) are coordinated

by another source. Indeed, this result comes from a completely computational process. How-

ever, this may reveal elements of the way the solution is organized. It is possible that coordina-

tion isn’t constrained to a specific configuration space, and variables in the task and joint spaces

could potentially be coupled. This notion could lead the way to a solution that uses time-delays

in task-space to determine delays in joint-space. Note that this is a direct consequence of the

specific selected reference frame, as will be discussed in the next section.

Reference Frames

Previously, numerous studies (Soechting and Ross, 1984; Soechting, 1982;

Worringham and Stelmach, 1985; Worringham et al., 1987) showed a high preference for

representing arm configurations in an extrinsic, or absolute, reference frame. This preference

fits well with the results from our analyses, where the absolute joint-space sources are a good

fit for the task-space sources.

Pozzo et al. (1998) have argued that given that gravity is a force that is sensed by both the

vestibular and proprioceptive systems, therefore guidance of a body segment in space requires

the CNS to use an absolute reference frame within which the external positions and displace-

ments of the whole body could be estimated. In fact, there is evidence that the nervous system

does have an internal model of gravity that can inform movements (McIntyre et al., 2001).

Similarly, in an extensive review in which a variety of different tasks were considered,

Soechting and Flanders (1992) noted that in all coordinate systems one axis was defined by the

gravitational vertical, and another was defined by a sagittal horizontal axis. This may be due to

the neural control stategy whereby human movements in a three-dimensional world are dom-

inated by the force of gravity and by the effect of visual horizon on motion planning. These

authors therefore concluded that this common, spatial frame of reference might aid in the ex-

change of information between brain regions. Indeed, electrophysiological data obtained from

neural recordings in the superior colliculus andmotor cortex have suggested that this is the case,

with neural activity in both structures appearing to encode movement kinematics, specifically

movement direction.

Meanwhile, there is work in monkey models showing reach planning is performed in

eye-coordinates rather than arm-coordinates, and this is essential to hand-eye coordination

(Batista et al., 1999). Additionally, there is some evidence that at least in some brain regions,

reaching tasks are represented in body-coordinate frames (Lacquaniti et al., 1995) which seems

contrary to our results. However, the literature is quite mixed, with some researchers report-

ing results that seem to imply a neural preference for representing motion in hand or body-

coordinates (Soechting et al., 1990a; Wang and Spelke, 2000; McIntyre et al., 1998), and others

reporting preference for eye or world-coordinates (Bosco et al., 2000; Poljac and Van Den Berg,

2003), and others reporting multiple coordinate systems may be used for different representa-

tions or in different brain regions (Carrozzo et al., 2002; Graziano et al., 1994). Perhaps, as was

proposed in Andersen et al. (2007) there is a shared coordinate system used, with differentiated

gains used to modulate or transform between coordinates in eye or body space. Our results

seem to support the preference for world-coordinates at least in unconstrained armmovements,

but this is subject to further investigation.

Importantly, our results support previous work, where Soechting and Ross (1984) and

Flanders and Soechting (1990) showed that arm movements seem to be represented by yaw

and elevation angles. Specifically, it was suggested by Flanders and Soechting (1990) that target

distance and elevation are used to compute arm elevation, and that target azimuth is used to

compute arm yaw. Note the similarity between their results to the results we obtained, where
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one source controls the vertical variables and a second source controls the horizontal variables.

At present we do not think that the third source has a specific role, and it is postulated that it

accounts for the movement variability between different subjects and cycles.

Compositionality

There is also a growing body of literature that supports the idea of compositionality (Giszter,

2015; d’Avella and Bizzi, 2005; Flash and Hochner, 2005). Compositionality is a concept, by which

rather than controlling individual muscles, etc. the nervous system "composes" complex move-

ments fromunderlying behaviors or control units, knownasmotor primitives or synergies, where

multiple muscles, nerves etc. are coupled in a specific way. These primitives are specifically pa-

rameterizedor optimized to fitmotor needs for specific tasks, such as locomotion (Ivanenko et al.,

2004;Merkle et al., 1998) or armmovements (d’Avella et al., 2006;d’Avella and Lacquaniti, 2013;

Flash and Berthoz, 2021). Though synergies are somewhat debated, there is evidence formuscle

synergies (Bizzi et al., 1995; Tresch et al., 1999; Mussa-Ivaldi et al., 1994; Ivanenko et al., 2004).

In a sense, the sources we’ve shown here could be considered spatio-temporal synergies (or neu-

ral control synergies/motor primitives) and help provide evidence for synergies of movement co-

ordination. However, the question remains whether the muscle synergies are wholly a product

of the neural resolution of redundancy using underlying sources or based on biomechanical or

spinal constraints.

Previous work has shown that already at birth or just shortly after the spinal and supraspinal

networks seem to have intact motor primitives (Yang et al., 2019; Dominici et al., 2011). Our

results suggest that these motion primitives are represented neurally by means of basis func-

tions or sources, where joint movements are coordinated using a representation of sources

(Yang et al., 2019). However, tuning of this network is not complete at birth, and the coefficients

for producing movements in either the task or joint spaces are learned during maturation until

network convergence. Similar ideas appeared for the two-thirds power law, where it was ob-

served that the law substrates exist quite early in development but the movement trajectories

don’t converge toward exhibiting their mature characteristics until the age of approximately 12

years old (Viviani and Schneider, 1991). Additionally, the same suggestion was made for the law

of intersegmental coordination during locomotion by Bleyenheuft and Detrembleur (2012). In

both cases, it was suggested that the network exists at a very early age, but is tuned over time,

as described in the work by Dominici et al. (2011) where this was evaluated with newborn babies.

Future work should further explore such tuning.

Finally, this work provides further evidence that the CNS exploits sources (or basis functions)

and an absolute reference frame to devise a strategy for solving the inverse kinematics problem.

Ultimately, the shape of the specific sources used by the nervous system is still a subject of re-

search. The FADA-based sources we computed here may be close to those represented in the

CNS, or they may be closer to pure sinusoids, as used by Barliya et al. (2009) in their oscillator

model of the intersegmental coordination. Future work will continue to focus on characteriz-

ing the sources and the time shifts between them more carefully, as well as considering their

representations within the nervous system.

Conclusion

In this work we have presented theoretical work based on our kinematic analysis of experimen-

tally recorded arm movements, showing that a single set of sources could be used to represent

movement trajectories in both the task and joint-spaces. In particular we used this observation

to mathematically formulate a solution to the inverse kinematics problem. We showed that a

set of three constituent sources could be extracted frommovement data and, depending on the

reference frame, could be used to represent both joint and task-space movements. Importantly,

our analysis showed that using an external, absolute angle representation yielded significantly

closer correlation between the joint and task-space sources, and therefore better transferabil-
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ity. Additionally, we investigated the time-delays between degrees of freedom, and found that

there are specific couplings that exist and can be identified through our source decomposition

approach. We also found essentially one source related to horizontal (azimuth) variables and

one source related to vertical (elevation) variables. Finally, we believe that this work has implica-

tions for our understanding of the operation and coordination of the central nervous system in

the planning of movement, and therefore continuing research towards this end is important for

our understanding of neural mechanisms of humanmovement generation andmotor-disorders

and pathologies.
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